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1
ELECTROCHROMIC DEVICE HAVING
THREE-DIMENSIONAL ELECTRODE

FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT

This invention was made with government support under
CBET-1150617 awarded by the National Science Founda-
tion. The government has certain rights in the invention.

BACKGROUND

Electrochromic (EC) devices have been attracting widely-
spread attention as they can be used as smart windows and
electronic displays. In particular, recent research and devel-
opment progress in organic and polymer electrochromic
materials exhibiting different voltage-dependent colors
makes EC devices a strong candidate for sunlight-readable
exterior displays. Typically, an EC device includes an elec-
trochromic material between two electrodes and in contact
with an electrolyte. A porous layer, referred to as the docking
layer, is prepared from a suitable semiconductor material
such as TiO, or ZnO, attached to one of the electrodes and
separated from the other electrode by the electrolyte. The
electrochromic material is absorbed or attached to the dock-
ing layer. When a high enough voltage is applied, the elec-
trochromic material is reduced or oxidized, and changes
color. For example, diethyl viologen diiodine is an electro-
chromic material which is colorless, and becomes darkly
colored upon reduction.

However, the quest for electrochromic display technology
often suffers from the dilemma of the thickness of the docking
layer and the resulting slow charge diffusion that limits the
switching speed of electrochromic device. Explicitly, a film
with a large surface area such as a TiO, nanoparticulate film
or a polymer film is often desired to load enough electrochro-
mic materials for sufficient color contrast, but at a cost ot high
driving voltage and slow response time due to the large series
resistance and slow electron mobility in the docking layer.
Once an electric leak occurs between the two electrodes, the
high voltage will immediately drop on the electrolyte, result-
ing in dielectric breakdown of the electrolytes and active
electrochromic material, thus deteriorating the lifetime of the
device.

SUMMARY

In a first aspect, the present invention is an electrochromic
device, comprising (i) a conductive layer, (ii) an electrochro-
mic material, on the conductive layer (iii) an electrolyte, on
the electrochromic material, and (iv) a counter-electrode, on
the electrolyte. The conductive layer has a surface roughness
factor (SRF) of at least 10, and the conductive layer comprises
a semi-metal.

In a second aspect, the present invention is an electrochro-
mic device, comprising (i) a conductive layer, (ii) an electro-
chromic material, on the conductive layer (iii) an electrolyte,
on the electrochromic material, and (iv) a counter-electrode,
on the electrolyte. The conductive layer has a surface rough-
ness factor (SRF) of atleast 10, and the electrochromic mate-
rial is not Ni oxide or hydroxide.

In a third aspect, the present invention is an electrochromic
display, comprising a plurality of the electrochromic devices.

In a fourth aspect, the present invention is a process of
preparing an electrochromic device, comprising forming a
conductive layer, having a SRF of at least 10, applying an
electrochromic material onto the conductive layer, and pre-
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2

paring the electrochromic device using the conductive layer
and the electrochromic material. The conductive layer com-
prises a semi-metal.

DEFINITIONS

Surface roughness factor (SRF) is the surface area divided
by the projected substrate area. The surface area is determined
by measuring the BET surface area.

Response time of an EC device is the greater of the coloring
or de-coloring response time. The coloring response time is
the time the device takes to go from a de-colored state to a
colored state, using 75% of the coloring of the full colored
state as an end-point. The de-coloring response time is the
time the device takes to go from a colored state to a de-colored
state, using 75% of the de-coloring of the fully de-colored
state as an end-point. The response time is determined using
the coloring voltage, where the fully colored or fully de-
colored state is achieved using the coloring voltage. Prefer-
ably, the response time of the EC device is at most 1 second,
more preferably at most at most 750 ms, even more preferably
at most 500 ms, and most preferably at most 400 ms.

Coloring voltage of an EC device is the lowest voltage
necessary to go from a de-colored state to 75% of the most
fully colored states achievable with higher voltages. Prefer-
ably, the coloring voltage is at most 3V, more preferably at
most 2V, even more preferably at most 1V, and most prefer-
ably at most 0.9V.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B show schematic diagrams of an EC
device.

FIGS. 2a, 2b, 2¢ and 2d show SEM images of 3-dimen-
sional conductive FTO hollow nanobeads: (a) Topview; (b)
Cross-section; (¢) Magnified image of individual FTO nano-
beads; (d) FTO nanobeads coated with viologen.

FIGS. 3a and 35 illustrate reflection and response time of
an EC device: (a) Reflection at 580 nm at different driving
voltages; (b) Response time analysis of EC device.

FIGS. 4a and 4b illustrate response time and reversibility
of'an EC device: (a) Arrhenius plots: response time of color-
ing at different temperature at -0.9V; (b) Reversibility test of
EC device.

FIG. 5 is a full graph of the reversibility test at 0.9V of an
EC device.

FIG. 6 is a schematic diagram of an EC display, which an
enlarged portion showing the individual EC devices which
make up a portion of the EC display.

DETAILED DESCRIPTION

The present invention makes use of the discovery that
replacing the semiconductor docking layer, with a conductive
layer having a surface roughness factor (SRF) of at least 10,
dramatically improves the response time and reduces the
driving voltage of the EC device. Preferably, the conductive
layer is a semimetal, including n-type degenerate semicon-
ductors such as fluorinated tin oxide (FTO), aluminum-zinc
oxide (AZO), antimony-tin oxide (ATO) or indium-tin oxide
(ITO), which are transparent. Preferably, the electrochromic
material is an organic compound or polymer, rather than a
metal oxide.

An EC device, 100, is illustrated in FIG. 1A, where com-
ponents are not shown to scale. The EC device includes an
optional substrate, 110, an active layer, 120, on the substrate,
an electrolyte layer, 130, on the active layer, and a counter-
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electrode, 140, on the electrolyte layer. Also illustrated in the
figure are electrical leads, 160 and 160, which electrically
connect a power source, 160, to the EC device. The power
source drives and controls the color change of the EC device.

FIG. 1B, also not to scale, shows details of the active layer,
120. The active layer includes a conductive layer, 122, which
has a surface roughness factor of at least 10. On the conduc-
tive layer is the electrochromic material, 124. In contact with
the electrochromic material is an electrolyte, 132; the elec-
trolyte is also present in the electrolyte layer. Also illustrated
is sealing layer, 126, which may extend the full length of the
EC device, and which separates, seals and/or insulates the EC
device. In the illustration, arrows indicate possible electri-
cally conductive pathways through the conductive layer.

An EC display, 200, is illustrated in FIG. 6, which is not
shown to scale. The figure shows an enlarged portion of the
display, which is composed of a plurality of independently
addressable EC devices, which each EC device being a single
pixel or section of the EC display. As shown in the figure, the
EC device of the display may be different colors, preferably 3
different colors, such as a first color, 210, a second color, 220,
and a third color, 230. Examples of preferred colors are red,
green and blue.

Preferably, the substrate and the conductive layer are trans-
parent, so that light may pass through the device when the
electrochromic material is colorless or lightly colored,
improving contrast. Alternatively, the substrate and/or the
conductive layer are white, again to provide improved con-
trast Examples of substrates include glass, quartz and trans-
parent polymeric materials, such as polycarbonate. Examples
of transparent conductive layers include indium-tin oxide,
fluorinated tin oxide, and aluminum-zinc oxide. These trans-
parent conductive materials are semimetals. The conductive
layer may also be formed as a composite material and/or
formed as multiple layers. For example, a planar substrate of
glass may be coated with a layer of fluorinated tin oxide, and
fine particles of fluorinated tin oxide applied to the surface
and sintered together to provide the substrate and conductive
layer.

A variety of techniques may be used to provide a conduc-
tive layer with a SRF of at least 10. For example, a planar
substrate may be coated with a layer of conductive material,
and then fine particles of the conductive material may be
applied to the coated substrate and sintered together. Alterna-
tively, a substrate may be etched to provide a substrate with a
SRF of at least 10, and then coated with a conductive layer,
providing a conductive layer with a SRF of at least 10. Pref-
erably the conductive layer may have a SRF of at least 20, at
least 50, at least 100, at least 400, or at least 500, including 15,
25, 30, 40, 45, 60, 70, 80, 90, 150, 200, 300, 530, 600, 700,
800, 900 and 1000.

In another alternative, a template material and a precursor
of the conductive layer material may be used to form a con-
ductive layer with an SRF of at least 10. The template may be
ordered or disordered. Examples include a disordered tem-
plate of polystyrene beads, which may be prepared by mixing
the polystyrene beads with a precursor solution; applying a
layer of the mixture to a substrate, then drying followed by
sintering. An ordered template of polystyrene beads may also
be used to form a conductive layer having an SRF of at least
10 (Yang et al., “Three-Dimensional Photonic Crystal Fluori-
nated Tin Oxide (FTO) Electrodes: Synthesis, Optic and
Electrical Properties” ACS Applied Materials & Interfaces
2011, 3, 1101). For example, polystyrene beads having a
diameter of 100 to 1000 nm, including 150, 200, 250, 300,
350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900 or
950 nm, may be used. Multiple layers may also be formed,
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where each layer or set of layers is formed using different
sizes of polystyrene beads. Subsequent etching or an increase
in the total number of layers may be used to increase the SRF
of the structure.

Electrochromic materials fall into two broad classes:
organic electrochromic materials, including organic mol-
ecules, organic polymers, organometallic molecules, and
organometallic polymers; and inorganic electrochromic
materials, including metal oxides and hydroxides. Preferably,
the electrochromic material is an organic electrochromic
material. Examples of organic electrochromic materials
include viologens, which may be found in many different
colors, including red, green and blue (G. Bar, et al. “RGB
organic electrochromic cells” Solar Energy Materials &
Solar Cells 99 (2012) 123-128; X. Tu, et al. “The synthesis
and electrochemical properties of cathodic-anodic composite
electrochromic materials” Dyes and Pigments 88 (2011)
39-43); violene/cyanine hybrids (S. Hiinig, et al. “Violene/
cyanine hybrids: a general structure for electrochromic sys-
tems” Chemistry—A European Journal Vol. 5, Issue 7 (1999)
1969-1973); metalloviologens (D. G. Kurth, et al. “A new
Co(II)-metalloviologen-based electrochromic material inte-
grated in thin multilayer films” Chem. Commun. (2005)
2119-2 121); organometallic complexes (F. Pichot, et al. “A
Series of Multicolor Electrochromic Ruthenium(II) Trisbipy-
ridine Complexes:[] Synthesis and Flectrochemistry” J.
Phys. Chem. A, 103 (31), 6263-6267 (1999)); phenothiazines
(M. Grétzel “Materials science: Ultrafast colour displays”
Nature 409 (2001) 575-576); organic polymers (B. D.
Reeves, et al. “Spray Coatable Electrochromic Diox-
ythiophene Polymers with High Coloration Efficiencies”
Macromolecules, 37 (20), 7559-7569 (2004); G. Sonmez, et
al. “Red, Green, and Blue Colors in Polymeric Electrochro-
mics” Advanced Materials 16 (21) 1905-1908 (2004)); and
organometallic polymers (S. Bernhard, et al. “Iron(Il) and
Copper(I) Coordination Polymers:[] Electrochromic Materi-
als with and without Chiroptical Properties” Inorg. Chem. 42
(14), 4389-4393 (2003)). Preferably, an EC display will
include EC devices with at least 3 different colors, for
example red, green and blue.

The electrochromic material may be applied to the con-
ducting layer by applying a solution of the electrochromic
material to the conducting layer, or by vapor phase deposi-
tion.

Although inorganic electrochromic materials are possible,
they are less preferred, and preferably inorganic electrochro-
mic materials are not use, more preferably metal oxides are
not used. Examples of inorganic electrochromic materials
include oxides and hydroxides Ni, W, Ti, Mo and Ir. Metal
oxide electrochromic materials are less preferred, because
they are usually formed by oxidizing a metal framework,
requiring the conducting layer to be formed of the metal or a
compound of the metal. In these cases, only a single electro-
chromic material will be present (the metal oxide), preventing
the formation of an EC display which includes more than a
single color of electrochromic material. Furthermore, the
metal or compound of the metal which forms the conducting
layer may no be white or transparent, reducing the contrast
available with the device.

An electrolyte, present in the conducting layer and which
forms the electrolyte layer, may be a liquid, polymer, or an
ionic liquid. Liquid electrolytes include solutions of one or
more salts dissolved in one or more polar solvents; examples
of solvents include water, alcohols, N-methylformamide
(NMF), propylene carbonate (PC) and dimethyl sulfoxide
(DMSO); examples of salts include NH,I, LiCl, LiClO,,
NaCl, and Na,SO,. Preferably, the solvent is a non-aqueous
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solvent. A liquid electrolyte may be a sol-gel electrolyte,
which is a liquid electrolyte containing a gelling agent;
examples of gelling agents included polymers and copoly-
mers which are soluble in the solvent of the liquid electrolyte,
or which can be polymerized in situ by adding the appropriate
monomer to the liquid electrolyte follow by initiation of the
polymerization reaction. Examples of gelling agents include
polyvinyl alcohols, copolymers of acrylates and methacry-
lates, polyacrylonitrile, polyethylene oxide, polyethylene
glycol and polyvinylpyrrolidone (S. Seki, at al. “Effect of
binder polymer structures used in composite cathodes on
interfacial charge transfer processes in lithium polymer bat-
teries” Electrochimica Acta, Vol. 50, Issues 2-3 (2004) 379-
383). Polymer electrolytes are electrolytes where the ions of
the electrolyte include a polymer (W. Li, et al. “A novel
polymer quaternary ammonium iodide and application in
quasi-solid-state dye-sensitized solar cells” Journal of Pho-
tochemistry and Photobiology A: Chemistry,Vol. 170, Issue 1
(2005), 1-6; J. Kang, et al. “Polymer electrolytes from PEO
and novel quatemary ammonium iodides for dye-sensitized
solar cells” FElectrochimica Acta, Vol. 48, Issue 17 (2003)
2487-2491; G. Wang, et al. “Gel polymer electrolytes based
on polyacrylonitrile and a novel quatemary ammonium salt
for dye-sensitized solar cells” Materials Research Bulletin
Vol. 39, Issue 13 (2004) 2113-2118; X.-G. Sun, et al. “Comb-
shaped single ion conductors based on polyacrylate ethers
and lithium alkyl sulfonate” Electrochimica Acta, Vol. 50,
Issue 5 (2005) 1139-1147). Ionic liquids are salts which are
liquid at or near room temperature, and may not require the
presence of a solvent (H. Ohno, et al. “Development of new
class of ion conductive polymers based on ionic liquids”
Electrochimica Acta, Vol. 50, Issues 2-3 (2004) 255-261; M.
Morita, et al. “Ionic conductance behavior of polymeric gel
electrolyte containing ionic liquid mixed with magnesium
salt” Journal of Power Sources, Vol. 139, Issues 1-2 (2005)
351-355). The electrolyte may be applied as a liquid. In the
case of non-liquid electrolytes, a solution may be applied,
allowing the solvent to evaporate. In the case of solid polymer
electrolyte, in situ polymerization of monomers by be carried
out, using a solution of the monomer or a neat mixture of the
monomers.

The counter electrode is a transparent conducting material,
which may optionally be present on the surface of a substrate
material. Examples include indium-tin oxide, fluorinated tin
oxide, antimony-tin oxide and aluminum-zinc oxide, or any
of these materials on glass, quartz or transparent polymeric
materials, such as polycarbonate.

The sealing layer may be any material which prevent con-
tamination of the device from the outside environment, and
which prevents liquid electrolyte from leaking out of the
device. Sealing layer materials include metals, plastics,
epoxy resins and polydimethylsiloxane (PDMS).

EXAMPLES

In this example is shown that a conductive 3-dimensional
FTO hollow nanobead electrode can significantly enhance the
response time of EC devices to less than 300 ms, a factor 10
enhancement in comparison to the conventional solid-state
EC devices using TiO, nanoparticle film as a docking layer on
a planar FTO electrodes. Meanwhile, the driving voltage can
be reduced to less than 1.2 V and the devices show excellent
reversibility and stability after nearly 4000 cycles. In perspec-
tive, the fast electron transport in the 3-dimensional conduc-
tive nanobead electrodes provides a feasible way to overcome
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the persistence of vision for future sun-light readable and
low-energy driven EC display technology as well as other
electrochemical processes.

This approach is fundamentally advanced over current
effort of alternating the morphology of docking materials
from TiO, or ZnO nanoparticles to nanowires and other nano-
structures. In particular, FTO has a high conductivity
over >10° S/cm, (107 times greater than TiO, nanoparticle
film) due to its high carrier concentration (>10*°/cm?) and
carrier mobility (65 cm®*V~'s™).

The device configuration is illustrated in FIG. 1B. Hollow
3-dimensional FTO nanobeads (~200 nm in diameter) were
sintered on a flat FTO glass as one electrode and another flat
FTO glass as counter electrode. Diethyl viologen diiodine
was chosen as the electrochromic material for the high sta-
bility of the viologen coloration state. The viologen mol-
ecules can be absorbed on both the inner and outer surfaces of
the FTO nanobead electrode due to the small apertures (50
nm) on each FTO nanobead, which also allows the infiltration
of the PMMA-P(VAc-MA)+LiClO,-based sol-gel electro-
lyte, thereafter. The FTO nanobead electrodes were prepared
by a morphology-controllable and template-assisted evapo-
rative co-assembly method (Liu, F. Q., et al. “Three-dimen-
sional conducting oxide nanoarchitectures: morphology-con-
trollable synthesis, characterization, and applications in
lithium-ion batteries” Nanoscale 2013, 5, 6422) and also
briefly described below.

Preparation of FTO Nanobeads:

In atypical preparation process of FTO hollow nanobeads,
24 mg of SnCl,.2H,0, 4.5 mg of NH,F and 450p1 water were
mixed and magnetically stirred for 2 hours. Then, 275 pl 200
nm PS suspension was added in the mixture, followed by
stirring for 24 hours. 50 pl of the resulting suspension was
spread on 1.0 inchx1.0 inch commercial FTO substrate with
scotch tape to define the area. The samples were dried at room
temperature overnight, following by 2 hours at 170° C., 3
hours at 340° C. and 2 hours at 450° C. with heating rate 1°
C./min. This process yields approximately 15-20 pm 3-di-
mensional FTO hollow nanobead film. The samples were
then treated at 300° C. in argon for 30 min to improve the
electrical conductivity with temperature rising rate of 1°
C./min.

Preparation of PMMA-P(VAc-MA)+LiClO,-Based Sol-
Gel Electrolytes

0.13 g of PMMA (polymethyl methacrylate) and 0.28 g
copolymer of VAc/MA (vinyl acetate/methyl acrylate) was
dissolved in 1 ml PC, 0.1 g LiCIO, was added and stirred
overnight.

Electrochromic Characterization

A square wave voltage was supplied by a function genera-
tor (Agilent 33220A) to powder the EC devices. The voltage
can be switched on from OV to a given value between =5V
within 50 ns. The periods of the alternating square wave
voltage can be set for different values as needed such as 8 s,
4s,2s,1s,0.5sand 0.3 s used in the tests.

Reflection vs. time of device was measured by the strip-
chart function on UV-Vis spectrometer (Ocean Optic
USB2000). The optic probe was placed on the sample holder
and attached on the surface of the device.

Temperature dependent measurements were conducted by
placing the EC device in a car cooler (Wagon Tech) that can
adjust the temperature between 3-70° C. A thermocouple was
taped on to the surface of the device to precisely record the
actual sample temperature.

FIG. 2a shows the SEM top view of the FTO nanobead
film. FIG. 25 is the cross-section of FTO nanobeads on ITO
glass, showing that the thickness of FTO nanobead layer is
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about 18 um. FIG. 2¢ is a magnified SEM image of the FTO
nanobeads with apertures of about 50 nm resulting from the
release of gaseous species from the decomposed templating
polystyrene nanobeads calcinated at 450° C. These openings
offer the passages for the sol-gel electrolytes to pass through.
FIG. 2d is the SEM image of FTO beads after viologens were
absorbed. Our previous N, adsorption/desorption isotherms
study shows that the BET surface area of 200 nm 3-dimen-
sional FTO nanobeads is 53 m*/g, and the measured mass per
unit projected area of the FTO nanobead film with a thickness
of 18 um is ~1 mg/cm®. Thus, the surface roughness factor
(effective surface area/projected substrate area) of this 18 um
thick FTO nanobeads film is over ~530. The sheet resistance
of the film was measured to be 27 Q/square, indicating the
excellent conductivity of the nanobead electrodes.

The device is driven by an alternating square-wave voltage
supplied by a function generator, which is capable of alter-
nating the polarity of voltage with a time resolution of 50 ns.
The rate of the color change driven by the applied voltage, i.e.
electrochromic effect, can be characterized by measuring the
time-resolved reflectance (at a resolution of 20 ms) of the
device at 580 nm, around which the first reduced state of
viologen exhibits a wide absorption band. The lowest
observed coloring voltage was ~0.8 V, which is very close to
the first reduction for most of alkyl substituted viologens
V**—=V™*. FIG. 3a shows the real-time reflectance of the
device at 580 nm vs. time driven by different square wave
voltages (£0.9V, £1.2V and £2.0 V). At -0.9 V (the negative
voltage is defined as when the FTO nanobead electrode is
negatively biased, and the flat counter electrode is positively
biased) with periods of 8 s, 4 s, 2 s, and Is, the device shows
a A6.1% reduction in reflection between fully de-colored and
colored state. Further shortening the periods decreases the
change of reflectance to 5% at period of 0.5 s. The device
shows A6.7% and A8% reflectance change between de-col-
ored and colored states at driving voltage of -1.2'V and -2V,
respectively. Although the absolute change of the reflectance
is not high due to single-wavelength measurement, the device
clearly shows the change of color from pale yellow to blue.
Three video clips exhibit the visual effect of the rapid color-
ing-decoloring cycling driven by 0.9V square wave with peri-
ods of 100 ms, 200 ms and 600 ms, respectively.

FIG. 3b shows the response times of the coloring and
de-coloring processes at +0.9V. To assure a fair comparison
with literature reported response times of the flat FTO elec-
trode-based EC devices, the response times with respect to
the 75%, 85% and 95% of the full color or de-color change
was adopted. At 0.9 V, the response time is ~270 ms for
reaching 75% coloring state and ~400 ms for reaching 75%
de-coloring state, respectively. Even for 95% coloring and
de-coloring state, the response time is only 540 ms and 861
ms, respectively, in contrast to the 2~3 s response time of the
conventional EC devices using TiO, nanoparticles as the
docking layer.

We also conducted temperature-dependent response time
measurement in comparison with the temperature-dependent
resistance of 3-dimensional FTO nanobead electrode and
temperature-dependent resistance of the polymer electro-
Iytes.

TABLE 1

Response Time vs Temperature defined
at different change of percentage

T,/ms Tz/ms T, /ms Ty/ms T,/ms T,/ /ms
Temp/K  75%Co  75%De 85%Co 85%De 95% Co 95% De
279.55 532 1040 803 1533 1230 2327
287.55 422 604 689 937 931 1216
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TABLE 1-continued

Response Time vs Temperature defined
at different change of percentage

T,ms Tyzms T, /ms Ty/ms T, /ms T,/ms
Temp/K  75% Co 75% De 85% Co 85%De 95% Co 95% De
296.65 272 400 373 609 540 861
307.65 216 429 332 385 422 854
317.75 137 266 240 385 359 528
327.55 117 167 194 221 275 353

T,o: response time of coloring process
Tge: response time of decloring process
Co: coloring

De: decloring

This study provides insights on the rate-limiting steps of
the EC process in the device. As shown in FIG. 4a, the
Arrhenius plot of response time increase as temperature
decreases at aslope 0f2.99 (at 75% color change). In contrast,
the Arrhenius plot of resistance of polymer electrolytes
increases as temperature decreases at a slope of 2.89, due to
the decrease of ion mobility (i.e., kinetics) at lower tempera-
ture. Apparently, the resistance of the 3-dimensional FTO
nanobead electrode (slope of 0.56) has much less temperature
dependence than the device response time and the resistance
of polymer electrolytes. Since the slope of the Arrhenius plot
of response time reflects the kinetic activation energy of the
EC process, while the overall EC process involves three steps,
including electron transport in the FTO nanobead layer, ion
transport in polymer electrolytes and the redox reaction of the
viologen. The comparison of the degree of the slopes of the
Arrhenius plots indicates that the response time is mainly
limited by the relatively slow ion transport in the electrolytes,
instead of the electron transport in the FTO nanobead elec-
trodes.

The reversibility of the device was further studied by
applying cycling to the device at £0.9V. After more than 3700
EC cycles (see FIG. 4b), no obvious decrease of performance
was observed. The complete cycling graph is shown in FIG. 5.
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What is claimed is:
1. An electrochromic device, comprising:
(1) a conductive layer,
(ii) an electrochromic material, on the conductive layer
(iii) an electrolyte, on the electrochromic material, and
(iv) a counter-electrode, on the electrolyte,
wherein the conductive layer has a surface roughness fac-
tor (SRF) of at least 10,

the conductive layer comprises a semi-metal, and

the electrochromic device has a response time of at most
500 ms.

2. The electrochromic device of claim 1, wherein the elec-
trochromic material is an organic electrochromic material.

3. The electrochromic device of claim 1, wherein the con-
ductive layer has a SRF of at least 100.

4. The electrochromic device of claim 1, wherein the con-
ductive layer is transparent.

5. The electrochromic device of claim 1, wherein the con-
ductive layer comprises at least one member selected from the
group consisting of fluorinated tin oxide, aluminum-zinc
oxide, antimony-tin oxide and indium-tin oxide.

6. The electrochromic device of claim 1, wherein the elec-
trochromic material is a viologen.

7. The electrochromic device of claim 1, further compris-
ing a substrate, and the conductive layer is on the substrate.

8. The electrochromic device of claim 1, wherein the elec-
trolyte comprises one member selected from the group con-
sisting of liquid electrolytes and polymer electrolytes.

9. The electrochromic device of claim 1, wherein the elec-
trolyte comprises one member selected from the group con-
sisting of liquid electrolytes and ionic liquid electrolytes.

10. The electrochromic device of claim 1, wherein the
electrolyte comprises a non-aqueous solvent.

11. The electrochromic device of claim 1, wherein the
electrolyte comprises a salt.

12. The electrochromic device of claim 1, further compris-
ing a transparent substrate, and the conductive layer is on the
substrate,

wherein the electrochromic material is an organic electro-

chromic material,

the conductive layer has a SRF of at least 400, and

the conductive layer comprises at least one member

selected from the group consisting of fluorinated tin
oxide, aluminum-zinc oxide, antimony-tin oxide and
indium-tin oxide.

13. The electrochromic device of claim 1, having a coloring
voltage of at most 1V.

14. An electrochromic display, comprising a plurality of
the electrochromic devices of claim 1.

15. The electrochromic display of claim 14, wherein the
plurality of electrochromic devices comprises electrochromic
materials having at least 3 different colors.

16. An electrochromic device, comprising:

(1) a conductive layer,

(ii) an electrochromic material, on the conductive layer

(iii) an electrolyte, on the electrochromic material, and

(iv) a counter-electrode, on the electrolyte,

wherein the conductive layer has a surface roughness fac-

tor (SRF) of at least 10,

the electrochromic material is not Ni oxide or hydroxide,

and

the electrochromic device has a response time of at most

500 ms.
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17. The electrochromic device of claim 16, wherein the
conductive layer is transparent.
18. The electrochromic device of claim 16, wherein the
electrochromic material is a viologen.
19. A process of preparing an electrochromic device, com-
prising:
forming a conductive layer, having a SRF of at least 10,
applying an electrochromic material onto the conductive
layer, and
preparing the electrochromic device using the conductive
layer and the electrochromic material,
wherein the electrochromic device comprises:
(1) a conductive layer,
(ii) an electrochromic material, on the conductive layer
(iii) an electrolyte, on the electrochromic material, and
(iv) a counter-electrode, on the electrolyte,
the conductive layer comprises a semi-metal, and
the electrochromic device has a response time of at most
500 ms.
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