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ELECTROCHROMIC DEVICE HAVING 
THREE-DIMIENSIONAL ELECTRODE 

FEDERALLY SPONSORED RESEARCHOR 
DEVELOPMENT 

This invention was made with government Support under 
CBET-1150617 awarded by the National Science Founda 
tion. The government has certain rights in the invention. 

BACKGROUND 

Electrochromic (EC) devices have been attracting widely 
spread attention as they can be used as Smart windows and 
electronic displays. In particular, recent research and devel 
opment progress in organic and polymer electrochromic 
materials exhibiting different Voltage-dependent colors 
makes EC devices a strong candidate for Sunlight-readable 
exterior displays. Typically, an EC device includes an elec 
trochromic material between two electrodes and in contact 
with an electrolyte. A porous layer, referred to as the docking 
layer, is prepared from a suitable semiconductor material 
such as TiO, or ZnO, attached to one of the electrodes and 
separated from the other electrode by the electrolyte. The 
electrochromic material is absorbed or attached to the dock 
ing layer. When a high enough Voltage is applied, the elec 
trochromic material is reduced or oxidized, and changes 
color. For example, diethyl viologen diiodine is an electro 
chromic material which is colorless, and becomes darkly 
colored upon reduction. 

However, the quest for electrochromic display technology 
often suffers from the dilemma of the thickness of the docking 
layer and the resulting slow charge diffusion that limits the 
switching speed of electrochromic device. Explicitly, a film 
with a large Surface area Such as a TiO2 nanoparticulate film 
or a polymer film is often desired to load enough electrochro 
mic materials for Sufficient color contrast, but at a cost of high 
driving Voltage and slow response time due to the large series 
resistance and slow electron mobility in the docking layer. 
Once an electric leak occurs between the two electrodes, the 
high voltage will immediately drop on the electrolyte, result 
ing in dielectric breakdown of the electrolytes and active 
electrochromic material, thus deteriorating the lifetime of the 
device. 

SUMMARY 

In a first aspect, the present invention is an electrochromic 
device, comprising (i) a conductive layer, (ii) an electrochro 
mic material, on the conductive layer (iii) an electrolyte, on 
the electrochromic material, and (iv) a counter-electrode, on 
the electrolyte. The conductive layer has a Surface roughness 
factor (SRF) of at least 10, and the conductive layer comprises 
a semi-metal. 

In a second aspect, the present invention is an electrochro 
mic device, comprising (i) a conductive layer, (ii) an electro 
chromic material, on the conductive layer (iii) an electrolyte, 
on the electrochromic material, and (iv) a counter-electrode, 
on the electrolyte. The conductive layer has a Surface rough 
ness factor (SRF) of at least 10, and the electrochromic mate 
rial is not Ni oxide or hydroxide. 

In a third aspect, the present invention is an electrochromic 
display, comprising a plurality of the electrochromic devices. 

In a fourth aspect, the present invention is a process of 
preparing an electrochromic device, comprising forming a 
conductive layer, having a SRF of at least 10, applying an 
electrochromic material onto the conductive layer, and pre 
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2 
paring the electrochromic device using the conductive layer 
and the electrochromic material. The conductive layer com 
prises a semi-metal. 

DEFINITIONS 

Surface roughness factor (SRF) is the surface area divided 
by the projected substrate area. The surface area is determined 
by measuring the BET surface area. 

Response time of an EC device is the greater of the coloring 
or de-coloring response time. The coloring response time is 
the time the device takes to go from a de-colored State to a 
colored state, using 75% of the coloring of the full colored 
state as an end-point. The de-coloring response time is the 
time the device takes to go from a colored State to a de-colored 
state, using 75% of the de-coloring of the fully de-colored 
state as an end-point. The response time is determined using 
the coloring voltage, where the fully colored or fully de 
colored State is achieved using the coloring Voltage. Prefer 
ably, the response time of the EC device is at most 1 second, 
more preferably at most at most 750 ms, even more preferably 
at most 500 ms, and most preferably at most 400 ms. 

Coloring voltage of an EC device is the lowest voltage 
necessary to go from a de-colored state to 75% of the most 
fully colored states achievable with higher voltages. Prefer 
ably, the coloring voltage is at most 3V, more preferably at 
most 2V, even more preferably at most 1V, and most prefer 
ably at most 0.9V. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIGS. 1A and 1B show schematic diagrams of an EC 
device. 

FIGS. 2a, 2b, 2c and 2d show SEM images of 3-dimen 
sional conductive FTO hollow nanobeads: (a) Topview; (b) 
Cross-section; (c) Magnified image of individual FTO nano 
beads; (d) FTO nanobeads coated with viologen. 

FIGS. 3a and 3b illustrate reflection and response time of 
an EC device: (a) Reflection at 580 nm at different driving 
voltages; (b) Response time analysis of EC device. 

FIGS. 4a and 4b illustrate response time and reversibility 
of an EC device: (a) Arrhenius plots: response time of color 
ing at different temperature at -0.9V; (b) Reversibility test of 
EC device. 

FIG. 5 is a full graph of the reversibility test at +0.9V of an 
EC device. 

FIG. 6 is a schematic diagram of an EC display, which an 
enlarged portion showing the individual EC devices which 
make up a portion of the EC display. 

DETAILED DESCRIPTION 

The present invention makes use of the discovery that 
replacing the semiconductor docking layer, with a conductive 
layer having a surface roughness factor (SRF) of at least 10, 
dramatically improves the response time and reduces the 
driving voltage of the EC device. Preferably, the conductive 
layer is a semimetal, including n-type degenerate semicon 
ductors such as fluorinated tin oxide (FTO), aluminum-zinc 
oxide (AZO), antimony-tin oxide (ATO) or indium-tin oxide 
(ITO), which are transparent. Preferably, the electrochromic 
material is an organic compound or polymer, rather than a 
metal oxide. 
An EC device, 100, is illustrated in FIG. 1A, where com 

ponents are not shown to scale. The EC device includes an 
optional substrate, 110, an active layer, 120, on the substrate, 
an electrolyte layer, 130, on the active layer, and a counter 
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electrode, 140, on the electrolyte layer. Also illustrated in the 
figure are electrical leads, 160 and 160, which electrically 
connect a power source, 160, to the EC device. The power 
source drives and controls the color change of the EC device. 

FIG. 1B, also not to scale, shows details of the active layer, 
120. The active layer includes a conductive layer, 122, which 
has a Surface roughness factor of at least 10. On the conduc 
tive layer is the electrochromic material, 124. In contact with 
the electrochromic material is an electrolyte, 132; the elec 
trolyte is also present in the electrolyte layer. Also illustrated 
is sealing layer, 126, which may extend the full length of the 
EC device, and which separates, seals and/or insulates the EC 
device. In the illustration, arrows indicate possible electri 
cally conductive pathways through the conductive layer. 
An EC display, 200, is illustrated in FIG. 6, which is not 

shown to scale. The figure shows an enlarged portion of the 
display, which is composed of a plurality of independently 
addressable EC devices, which each EC device being a single 
pixel or section of the EC display. As shown in the figure, the 
EC device of the display may be different colors, preferably 3 
different colors, such as a first color, 210, a second color, 220, 
and a third color, 230. Examples of preferred colors are red, 
green and blue. 

Preferably, the substrate and the conductive layer are trans 
parent, so that light may pass through the device when the 
electrochromic material is colorless or lightly colored, 
improving contrast. Alternatively, the Substrate and/or the 
conductive layer are white, again to provide improved con 
trast Examples of Substrates include glass, quartz and trans 
parent polymeric materials, such as polycarbonate. Examples 
of transparent conductive layers include indium-tin oxide, 
fluorinated tin oxide, and aluminum-zinc oxide. These trans 
parent conductive materials are semimetals. The conductive 
layer may also be formed as a composite material and/or 
formed as multiple layers. For example, a planar Substrate of 
glass may be coated with a layer of fluorinated tin oxide, and 
fine particles of fluorinated tin oxide applied to the surface 
and sintered together to provide the Substrate and conductive 
layer. 
A variety of techniques may be used to provide a conduc 

tive layer with a SRF of at least 10. For example, a planar 
substrate may be coated with a layer of conductive material, 
and then fine particles of the conductive material may be 
applied to the coated Substrate and sintered together. Alterna 
tively, a substrate may be etched to provide a substrate with a 
SRF of at least 10, and then coated with a conductive layer, 
providing a conductive layer with a SRF of at least 10. Pref 
erably the conductive layer may have a SRF of at least 20, at 
least 50, at least 100, at least 400, or at least 500, including 15, 
25, 30, 40, 45, 60, 70, 80, 90, 150, 200, 300,530, 600, 700, 
800, 900 and 1000. 

In another alternative, a template material and a precursor 
of the conductive layer material may be used to form a con 
ductive layer with an SRF of at least 10. The template may be 
ordered or disordered. Examples include a disordered tem 
plate of polystyrene beads, which may be prepared by mixing 
the polystyrene beads with a precursor Solution; applying a 
layer of the mixture to a substrate, then drying followed by 
sintering. An ordered template of polystyrene beads may also 
be used to form a conductive layer having an SRF of at least 
10 (Yang et al., “Three-Dimensional Photonic Crystal Fluori 
nated Tin Oxide (FTO) Electrodes: Synthesis, Optic and 
Electrical Properties’ ACS Applied Materials & Interfaces 
2011, 3, 1101). For example, polystyrene beads having a 
diameter of 100 to 1000 nm, including 150, 200, 250, 300, 
350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850,900 or 
950 nm, may be used. Multiple layers may also be formed, 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
where each layer or set of layers is formed using different 
sizes of polystyrene beads. Subsequent etching or an increase 
in the total number of layers may be used to increase the SRF 
of the structure. 

Electrochromic materials fall into two broad classes: 
organic electrochromic materials, including organic mol 
ecules, organic polymers, organometallic molecules, and 
organometallic polymers; and inorganic electrochromic 
materials, including metal oxides and hydroxides. Preferably, 
the electrochromic material is an organic electrochromic 
material. Examples of organic electrochromic materials 
include viologens, which may be found in many different 
colors, including red, green and blue (G. Bar, et al. “RGB 
organic electrochromic cells' Solar Energy Materials & 
Solar Cells 99 (2012) 123-128; X. Tu, et al. “The synthesis 
and electrochemical properties of cathodic-anodic composite 
electrochromic materials’ Dyes and Pigments 88 (2011) 
39-43); violene/cyanine hybrids (S. Hinig, et al. “Violene/ 
cyanine hybrids: a general structure for electrochromic sys 
tems’ Chemistry A European Journal Vol. 5, Issue 7 (1999) 
1969-1973); metalloviologens (D. G. Kurth, et al. “A new 
Co(II)-metalloviologen-based electrochromic material inte 
grated in thin multilayer films’ Chem. Commun. (2005) 
21 19-2 121); organometallic complexes (F. Pichot, et al. “A 
Series of Multicolor Electrochromic Ruthenium(II) Trisbipy 
ridine Complexes: Synthesis and Electrochemistry” J. 
Phys. Chem. A, 103 (31), 6263-6267 (1999)); phenothiazines 
(M. Grätzel “Materials science: Ultrafast colour displays 
Nature 409 (2001) 575-576); organic polymers (B. D. 
Reeves, et al. “Spray Coatable Electrochromic Diox 
ythiophene Polymers with High Coloration Efficiencies’ 
Macromolecules, 37 (20), 7559-7569 (2004); G. Sommez, et 
al. “Red, Green, and Blue Colors in Polymeric Electrochro 
mics' Advanced Materials 16 (21) 1905-1908 (2004)); and 
organometallic polymers (S. Bernhard, et al. “Iron(II) and 
Copper(I) Coordination Polymers: Electrochromic Materi 
als with and without Chiroptical Properties’ Inorg. Chem. 42 
(14), 4389-4393 (2003)). Preferably, an EC display will 
include EC devices with at least 3 different colors, for 
example red, green and blue. 
The electrochromic material may be applied to the con 

ducting layer by applying a solution of the electrochromic 
material to the conducting layer, or by vapor phase deposi 
tion. 

Although inorganic electrochromic materials are possible, 
they are less preferred, and preferably inorganic electrochro 
mic materials are not use, more preferably metal oxides are 
not used. Examples of inorganic electrochromic materials 
include oxides and hydroxides Ni, W, Ti, Mo and Ir. Metal 
oxide electrochromic materials are less preferred, because 
they are usually formed by oxidizing a metal framework, 
requiring the conducting layer to be formed of the metal or a 
compound of the metal. In these cases, only a single electro 
chromic material will be present (the metal oxide), preventing 
the formation of an EC display which includes more than a 
single color of electrochromic material. Furthermore, the 
metal or compound of the metal which forms the conducting 
layer may no be white or transparent, reducing the contrast 
available with the device. 
An electrolyte, present in the conducting layer and which 

forms the electrolyte layer, may be a liquid, polymer, or an 
ionic liquid. Liquid electrolytes include Solutions of one or 
more salts dissolved in one or more polar solvents; examples 
of solvents include water, alcohols, N-methylformamide 
(NMF), propylene carbonate (PC) and dimethyl sulfoxide 
(DMSO); examples of salts include NHI. LiCl, LiClO, 
NaCl, and NaSO. Preferably, the solvent is a non-aqueous 
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Solvent. A liquid electrolyte may be a sol-gel electrolyte, 
which is a liquid electrolyte containing a gelling agent; 
examples of gelling agents included polymers and copoly 
mers which are soluble in the solvent of the liquid electrolyte, 
or which can be polymerized in situ by adding the appropriate 
monomer to the liquid electrolyte follow by initiation of the 
polymerization reaction. Examples of gelling agents include 
polyvinyl alcohols, copolymers of acrylates and methacry 
lates, polyacrylonitrile, polyethylene oxide, polyethylene 
glycol and polyvinylpyrrolidone (S. Seki, at al. “Effect of 
binder polymer structures used in composite cathodes on 
interfacial charge transfer processes in lithium polymer bat 
teries' Electrochimica Acta, Vol. 50, Issues 2-3 (2004) 379 
383). Polymer electrolytes are electrolytes where the ions of 
the electrolyte include a polymer (W. Li, et al. A novel 
polymer quaternary ammonium iodide and application in 
quasi-solid-state dye-sensitized Solar cells' Journal of Pho 
to chemistry and Photobiology A. Chemistry, Vol. 170, Issue 1 
(2005), 1-6; J. Kang, et al. “Polymer electrolytes from PEO 
and novel quatemary ammonium iodides for dye-sensitized 
solar cells' Electrochimica Acta, Vol. 48, Issue 17 (2003) 
2487-2491; G. Wang, et al. “Gel polymer electrolytes based 
on polyacrylonitrile and a novel quatemary ammonium salt 
for dye-sensitized solar cells’ Materials Research Bulletin 
Vol.39, Issue 13 (2004) 2113-2118; X.-G. Sun, et al. “Comb 
shaped single ion conductors based on polyacrylate ethers 
and lithium alkyl sulfonate” Electrochimica Acta, Vol. 50. 
Issue 5 (2005) 1139-1147). Ionic liquids are salts which are 
liquid at or near room temperature, and may not require the 
presence of a solvent (H. Ohno, et al. “Development of new 
class of ion conductive polymers based on ionic liquids' 
Electrochimica Acta, Vol. 50, Issues 2-3 (2004) 255-261; M. 
Morita, et al. “Ionic conductance behavior of polymeric gel 
electrolyte containing ionic liquid mixed with magnesium 
salt” Journal of Power Sources, Vol. 139, Issues 1-2 (2005) 
351-355). The electrolyte may be applied as a liquid. In the 
case of non-liquid electrolytes, a solution may be applied, 
allowing the solvent to evaporate. In the case of solid polymer 
electrolyte, in situ polymerization of monomers by be carried 
out, using a solution of the monomer or a neat mixture of the 
OOCS. 

The counter electrode is a transparent conducting material, 
which may optionally be present on the surface of a substrate 
material. Examples include indium-tin oxide, fluorinated tin 
oxide, antimony-tin oxide and aluminum-zinc oxide, or any 
of these materials on glass, quartz or transparent polymeric 
materials, such as polycarbonate. 
The sealing layer may be any material which prevent con 

tamination of the device from the outside environment, and 
which prevents liquid electrolyte from leaking out of the 
device. Sealing layer materials include metals, plastics, 
epoxy resins and polydimethylsiloxane (PDMS). 

EXAMPLES 

In this example is shown that a conductive 3-dimensional 
FTO hollow nanobead electrode can significantly enhance the 
response time of EC devices to less than 300 ms, a factor 10 
enhancement in comparison to the conventional Solid-state 
EC devices usingTiO2 nanoparticle film as a docking layer on 
a planar FTO electrodes. Meanwhile, the driving voltage can 
be reduced to less than 1.2V and the devices show excellent 
reversibility and stability after nearly 4000 cycles. In perspec 
tive, the fast electron transport in the 3-dimensional conduc 
tive nanobead electrodes provides a feasible way to overcome 
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6 
the persistence of vision for future sun-light readable and 
low-energy driven EC display technology as well as other 
electrochemical processes. 

This approach is fundamentally advanced over current 
effort of alternating the morphology of docking materials 
from TiO, or ZnO nanoparticles to nanowires and other nano 
structures. In particular, FTO has a high conductivity 
over >10 S/cm, (10 times greater than TiO, nanoparticle 
film) due to its high carrier concentration (>10'/cm) and 
carrier mobility (65 cm V's'). 
The device configuration is illustrated in FIG. 1B. Hollow 

3-dimensional FTO nanobeads (-200 nm in diameter) were 
sintered on a flat FTO glass as one electrode and another flat 
FTO glass as counter electrode. Diethyl viologen diiodine 
was chosen as the electrochromic material for the high sta 
bility of the viologen coloration state. The viologen mol 
ecules can be absorbed on both the inner and outer surfaces of 
the FTO nanobead electrode due to the small apertures (50 
nm) on each FTO nanobead, which also allows the infiltration 
of the PMMA-POVAc-MA)+LiClO-based sol-gel electro 
lyte, thereafter. The FTO nanobead electrodes were prepared 
by a morphology-controllable and template-assisted evapo 
rative co-assembly method (Liu, F. Q., et al. “Three-dimen 
sional conducting oxide nanoarchitectures: morphology-con 
trollable synthesis, characterization, and applications in 
lithium-ion batteries' Nanoscale 2013, 5, 6422) and also 
briefly described below. 

Preparation of FTO Nanobeads: 
In a typical preparation process of FTO hollow nanobeads, 

24 mg of SnCl2.H2O, 4.5 mg of NHF and 450ll water were 
mixed and magnetically stirred for 2 hours. Then, 275ul 200 
nm PS suspension was added in the mixture, followed by 
stirring for 24 hours. 50 ul of the resulting Suspension was 
spread on 1.0 inchx 1.0 inch commercial FTO substrate with 
scotch tape to define the area. The samples were dried at room 
temperature overnight, following by 2 hours at 170° C., 3 
hours at 340°C. and 2 hours at 450° C. with heating rate 1 
C./min. This process yields approximately 15-20 um 3-di 
mensional FTO hollow nanobead film. The samples were 
then treated at 300° C. in argon for 30 minto improve the 
electrical conductivity with temperature rising rate of 1 
C./min. 

Preparation of PMMA-P(VAc-MA)+LiCIO-Based Sol 
Gel Electrolytes 

0.13 g of PMMA (polymethyl methacrylate) and 0.28 g 
copolymer of VAc/MA (vinyl acetate/methyl acrylate) was 
dissolved in 1 ml PC, 0.1 g LiCIO was added and stirred 
overnight. 

Electrochromic Characterization 
A square wave Voltage was Supplied by a function genera 

tor (Agilent 33220A) to powder the EC devices. The voltage 
can be switched on from OV to a given value between +5V 
within 50 ns. The periods of the alternating square wave 
voltage can be set for different values as needed such as 8 s. 
4 s, 2 s, 1 s, 0.5 s and 0.3s used in the tests. 

Reflection vs. time of device was measured by the strip 
chart function on UV-Vis spectrometer (Ocean Optic 
USB2000). The optic probe was placed on the sample holder 
and attached on the surface of the device. 

Temperature dependent measurements were conducted by 
placing the EC device in a car cooler (Wagon Tech) that can 
adjust the temperature between 3-70° C. Athermocouple was 
taped on to the surface of the device to precisely record the 
actual sample temperature. 

FIG. 2a shows the SEM top view of the FTO nanobead 
film. FIG. 2b is the cross-section of FTO nanobeads on ITO 
glass, showing that the thickness of FTO nanobead layer is 
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about 18 um. FIG.2c is a magnified SEM image of the FTO 
nanobeads with apertures of about 50 nm resulting from the 
release of gaseous species from the decomposed templating 
polystyrene nanobeads calcinated at 450° C. These openings 
offer the passages for the sol-gel electrolytes to pass through. 
FIG. 2d is the SEM image of FTO beads after viologens were 
absorbed. Our previous Nadsorption/desorption isotherms 
study shows that the BET surface area of 200 nm 3-dimen 
sional FTO nanobeads is 53 m?g, and the measured mass per 
unit projected area of the FTO nanobead film with a thickness 
of 18 um is ~1 mg/cm. Thus, the surface roughness factor 
(effective surface area/projected substrate area) of this 18 um 
thick FTO nanobeads film is over ~530. The sheet resistance 
of the film was measured to be 27 S2/square, indicating the 
excellent conductivity of the nanobead electrodes. 
The device is driven by an alternating square-wave Voltage 

Supplied by a function generator, which is capable of alter 
nating the polarity of voltage with a time resolution of 50 ns. 
The rate of the color change driven by the applied Voltage, i.e. 
electrochromic effect, can be characterized by measuring the 
time-resolved reflectance (at a resolution of 20 ms) of the 
device at 580 nm, around which the first reduced state of 
viologen exhibits a wide absorption band. The lowest 
observed coloring voltage was -0.8 V, which is very close to 
the first reduction for most of alkyl substituted viologens 
V*->V". FIG. 3a shows the real-time reflectance of the 
device at 580 nm vs. time driven by different square wave 
voltages (+0.9 V. +1.2V and +2.0 V). At -0.9 V (the negative 
voltage is defined as when the FTO nanobead electrode is 
negatively biased, and the flat counter electrode is positively 
biased) with periods of 8 s, 4 s, 2 s, and Is, the device shows 
a A6.1% reduction in reflection between fully de-colored and 
colored state. Further shortening the periods decreases the 
change of reflectance to 5% at period of 0.5 s. The device 
shows A6.7% and A8% reflectance change between de-col 
ored and colored states at driving voltage of -1.2V and -2V. 
respectively. Although the absolute change of the reflectance 
is not high due to single-wavelength measurement, the device 
clearly shows the change of color from pale yellow to blue. 
Three video clips exhibit the visual effect of the rapid color 
ing-decoloring cycling driven by 0.9V square wave with peri 
ods of 100 ms, 200 ms and 600 ms, respectively. 

FIG. 3b shows the response times of the coloring and 
de-coloring processes at t0.9V. To assure a fair comparison 
with literature reported response times of the flat FTO elec 
trode-based EC devices, the response times with respect to 
the 75%, 85% and 95% of the full color or de-color change 
was adopted. At -0.9 V, the response time is ~270 ms for 
reaching 75% coloring state and ~400 ms for reaching 75% 
de-coloring state, respectively. Even for 95% coloring and 
de-coloring state, the response time is only 540 ms and 861 
ms, respectively, in contrast to the 2-3 S response time of the 
conventional EC devices using TiO2 nanoparticles as the 
docking layer. 
We also conducted temperature-dependent response time 

measurement in comparison with the temperature-dependent 
resistance of 3-dimensional FTO nanobead electrode and 
temperature-dependent resistance of the polymer electro 
lytes. 

TABLE 1. 

Response Time vs Temperature defined 
at different change of percentage 

Ta?ms Ti?ms Ta?ms Tims Ta?ms Ti?ms 
Temp/K 75% Co 75% De 85% Co 85% De 95% Co 95% De 

279.55 532 1040 803 1533 1230 2327 
287.55 422 604 689 937 931 1216 
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TABLE 1-continued 

Response Time vs Temperature defined 
at different change of percentage 

T?ims T?ims T?ims T?ims T?ims Ti?ms 
Temp/K 75% Co 75% De 85% Co 85% De 95% Co 95% De 

296.65 272 400 373 609 S4O 861 
3O7.65 216 429 332 385 422 854 
317.75 137 266 240 385 359 528 
327.55 117 167 194 221 275 353 

T; response time of coloring process 
T: response time of decloring process 
Co: coloring 
De; decloring 

This study provides insights on the rate-limiting steps of 
the EC process in the device. As shown in FIG. 4a, the 
Arrhenius plot of response time increase as temperature 
decreases at a slope of 2.99 (at 75% color change). In contrast, 
the Arrhenius plot of resistance of polymer electrolytes 
increases as temperature decreases at a slope of 2.89, due to 
the decrease of ion mobility (i.e., kinetics) at lower tempera 
ture. Apparently, the resistance of the 3-dimensional FTO 
nanobead electrode (slope of 0.56) has much less temperature 
dependence than the device response time and the resistance 
of polymer electrolytes. Since the slope of the Arrhenius plot 
of response time reflects the kinetic activation energy of the 
EC process, while the overall EC process involves three steps, 
including electron transport in the FTO nanobead layer, ion 
transportin polymer electrolytes and the redox reaction of the 
viologen. The comparison of the degree of the slopes of the 
Arrhenius plots indicates that the response time is mainly 
limited by the relatively slow ion transport in the electrolytes, 
instead of the electron transport in the FTO nanobead elec 
trodes. 
The reversibility of the device was further studied by 

applying cycling to the device at +0.9V. After more than 3700 
EC cycles (see FIG.4b), no obvious decrease of performance 
was observed. The complete cycling graph is shown in FIG.5. 
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What is claimed is: 
1. An electrochromic device, comprising: 
(i) a conductive layer, 
(ii) an electrochromic material, on the conductive layer 
(iii) an electrolyte, on the electrochromic material, and 
(iv) a counter-electrode, on the electrolyte, 
wherein the conductive layer has a Surface roughness fac 

tor (SRF) of at least 10, 
the conductive layer comprises a semi-metal, and 
the electrochromic device has a response time of at most 

500 ms. 
2. The electrochromic device of claim 1, wherein the elec 

trochromic material is an organic electrochromic material. 
3. The electrochromic device of claim 1, wherein the con 

ductive layer has a SRF of at least 100. 
4. The electrochromic device of claim 1, wherein the con 

ductive layer is transparent. 
5. The electrochromic device of claim 1, wherein the con 

ductive layer comprises at least one member selected from the 
group consisting of fluorinated tin oxide, aluminum-zinc 
oxide, antimony-tin oxide and indium-tin oxide. 

6. The electrochromic device of claim 1, wherein the elec 
trochromic material is a viologen. 

7. The electrochromic device of claim 1, further compris 
ing a Substrate, and the conductive layer is on the Substrate. 

8. The electrochromic device of claim 1, wherein the elec 
trolyte comprises one member selected from the group con 
sisting of liquid electrolytes and polymer electrolytes. 

9. The electrochromic device of claim 1, wherein the elec 
trolyte comprises one member selected from the group con 
sisting of liquid electrolytes and ionic liquid electrolytes. 

10. The electrochromic device of claim 1, wherein the 
electrolyte comprises a non-aqueous solvent. 

11. The electrochromic device of claim 1, wherein the 
electrolyte comprises a salt. 

12. The electrochromic device of claim 1, further compris 
ing a transparent Substrate, and the conductive layer is on the 
Substrate, 

wherein the electrochromic material is an organic electro 
chromic material, 

the conductive layer has a SRF of at least 400, and 
the conductive layer comprises at least one member 

Selected from the group consisting of fluorinated tin 
oxide, aluminum-zinc oxide, antimony-tin oxide and 
indium-tin oxide. 

13. The electrochromic device of claim 1, having a coloring 
voltage of at most 1V. 

14. An electrochromic display, comprising a plurality of 
the electrochromic devices of claim 1. 

15. The electrochromic display of claim 14, wherein the 
plurality of electrochromic devices comprises electrochromic 
materials having at least 3 different colors. 

16. An electrochromic device, comprising: 
(i) a conductive layer, 
(ii) an electrochromic material, on the conductive layer 
(iii) an electrolyte, on the electrochromic material, and 
(iv) a counter-electrode, on the electrolyte, 
wherein the conductive layer has a Surface roughness fac 

tor (SRF) of at least 10, 
the electrochromic material is not Ni oxide or hydroxide, 

and 
the electrochromic device has a response time of at most 

500 ms. 
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17. The electrochromic device of claim 16, wherein the 
conductive layer is transparent. 

18. The electrochromic device of claim 16, wherein the 
electrochromic material is a viologen. 

19. A process of preparing an electrochromic device, com 
prising: 

forming a conductive layer, having a SRF of at least 10, 
applying an electrochromic material onto the conductive 

layer, and 
preparing the electrochromic device using the conductive 

layer and the electrochromic material, 
wherein the electrochromic device comprises: 

(i) a conductive layer, 
(ii) an electrochromic material, on the conductive layer 
(iii) an electrolyte, on the electrochromic material, and 
(iv) a counter-electrode, on the electrolyte, 

the conductive layer comprises a semi-metal, and 
the electrochromic device has a response time of at most 

500 mS. 
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